Antibiotic resistance in Lebanon Dr Matta Matta 17 july 2018

introduction

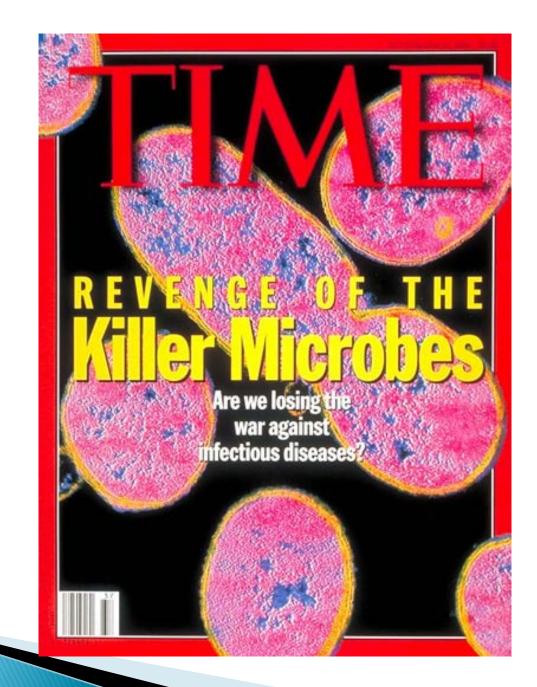
- Antibiotic Resistance:
 - One of the biggest threats to global health, food security, and development today.
 - Can affect anyone, of any age, in any country.
 - Occurs naturally, but misuse of antibiotics is accelerating the process.
 - leads to longer hospital stays, higher medical costs and increased mortality.

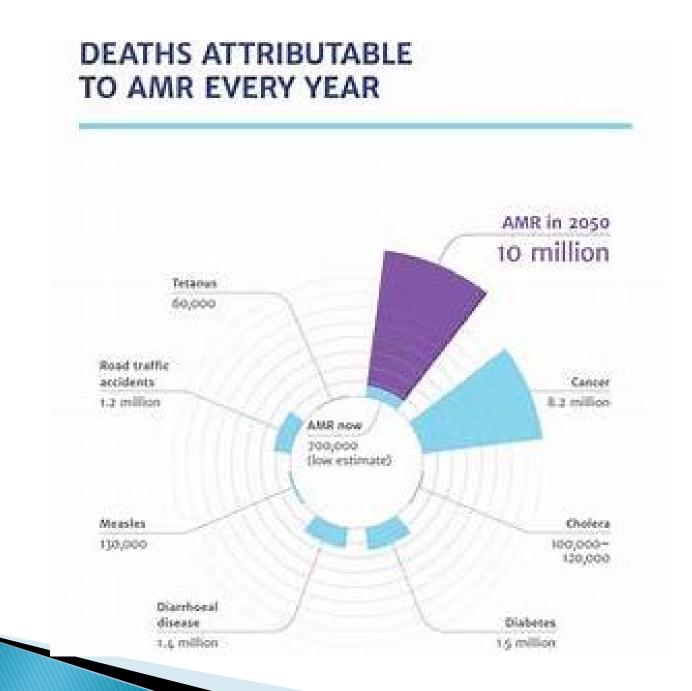
WHO chief's stark warning about danger of resistance to antibiotics 'Growing crisis' may 'turn common infections into untreatable disease Calls for restrictions on use in animals to halt the spread of E.coli

'An end

as we

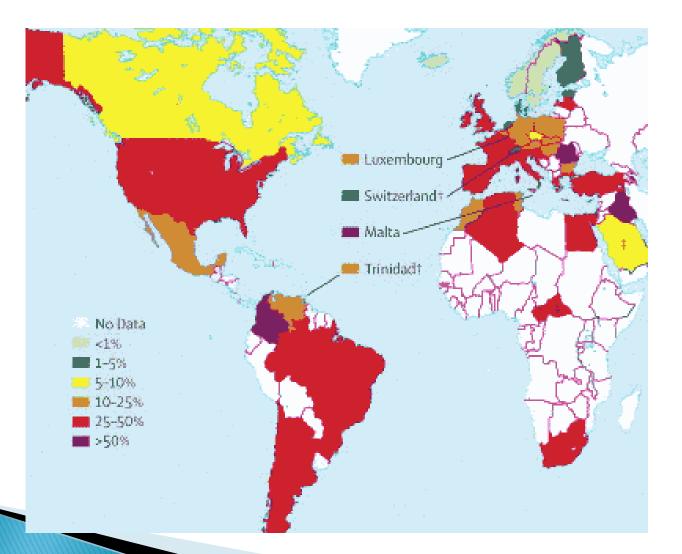
Margaret Chan


World Health Organisation


speaking in Copenhagen

Director-General

to modern


medicine

- When we talk about resistance we should know what is our prevalence locally
- Usually using other countries data and guidelines could be suboptimal
- Unlike other diseases guidelines and therapeutic courses should be tailored in infectious diseases toward our epidemiology.

MRSA prevalence

What about lebanon

International Journal of Infectious Diseases 46 (2016) 64-70

Surveillance of antimicrobial resistance in Lebanese hospitals: retrospective nationwide compiled data

Kamal Chamoun^a, Maya Farah^a, Georges Araj^b, Ziad Daoud^c, Rima Moghnieh^s, Pascale Salameh^d, Danielle Saade^e, Jacques Mokhbat^f, Emme Abboud^g, Monzer Hamze^h, Edmond Abboudⁱ, Tamima Jisr^j, Antoine Haddad^k, Rita Feghali¹, Nadim Azar^m, Mohammad El-Zaatariⁿ, Marwan Chedid^o, Christian Haddad^P, Mireille Zouain Dib Nehme^q, Angelique Barakat^r, Rola Husni^{f,*} Lebanese Society of Infectious Diseases Study Group (LSID study group)

^a Department of Internal Medicine, Lebanese American University Medical Center - Rizk Hospital, Beirut, Lebanon

Hospit al	Region	Туре	Beds	Methoda	Guidelines
Abou Jaoude	Mount Lebanon	Community	110	DD	CLSI
AUBMC	Beirut	University	350	DD	CLSI
BMC	Mount Lebanon	University	110	DD	SFM
CHN	North Lebanon	University	200	DD	CLSI
Hammoud	South Lebanon		500	Automated	CLSI
HDF	Beirut	University	450	Automated	EUCAST
UMCRH	Beirut	University	90	DD	CLSI
Makassed	Beirut	University	200	DD	CLSI
Mazloum	North Lebanon	Community	180	DD	CLSI
				+ automated	+ EUCAST
MEIH	Mount Lebanon	University	200	DD	SFM
MLH	Mount Lebanon	University	240	Automated	CLSI
NDS	Mount Lebanon	University	250	Automated	CLSI
NINI	North Lebanon	Community	120	DD	EUCAST
RHUH	Beirut	University	350	Automated	CLSI
SCH	Mount Lebanon	University	200	DD	EUCAST
SGH	Beirut	University	400	DD	CLSI

Table 1 Demographics and testing guidelines related to the participating hospitals

AUBMC, American University of Beirut Medical Center; BMC, Bellevue Medical Center; CHN, Centre Hospitalier du Nord; HDF, Hotel Dieu de France; UMCRH, University Medical Center Rizk Hospital; MEIH, Middle East Institute of Health; MLH, Mount Lebanon Hospital; NDS, Notre Dame des Secours; NINI; RHUH, Rafik Hariri University Hospital; SCH, Sacré Coeur Hospital; SGH, Saint Georges Hospital; DD, disc diffusion; CLSI, Clinical and Laboratory Standards Institute; SFM, Societé Française de Microbiologie; EUCAST, European Committee on Antimicrobial Susceptibility Testing.

* Automated microbial identification system: Vitek, BD Phoenix.

Table 2 Gram-positive and Gram-negative isolates

Gram-positive isolates	Total number	Proportion
	collected	(Gram-positive)
Coagulase-negative Staphylococcus	8194	39,6%
Staphylococaus aureus	4890	23,6%
Enterococcus spp	4145	20%
Streptococcus agalactiae	1386	6.7%
Streptococcus pyogenes	1059	5,1%
Streptococcus pneumoniae	648	3,1%
Streptococcus viridans group	362	1,8%
Total Gram-positive	20684	100%
Gram-negative isolates	Total number	Proportion
_	colle cted	(Gram-negative)
Escherichia coli	30411	54,7%
Pseudomonas aeruginosa	7897	14.2%
Klebsiella spp	7883	14.2%
A dire tobacter spp	3409	6.1%
Enterobacter spp	2207	4.08
Salmonella spp	877	1.6%
Citrobacter spp	738	1.3%
Morganella morganii	675	1.2%
Haemophilus influenzae	552	1.08
Sematia spp	480	0.9%
Shigella spp	164	0.3%
Proteus spp	162	0.3%
Moravella catarrhalis	139	0.2%
Total Gram-negative	55594	100%
Total Gram-positive and	76278	
Gram-negative isolates		

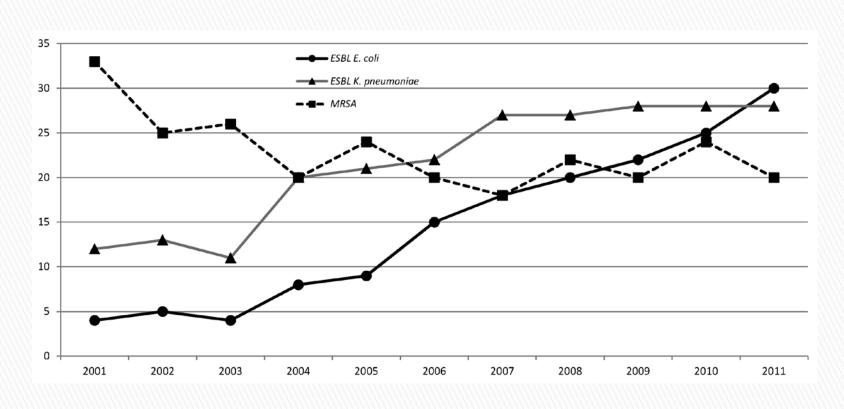
K. Chamoun et al./International Journal of Infectious Diseases 46 (2016) 64-70

Table 3 Susceptibility rates of Gram-positive organisms obtained from 16 Lebanese hospitals

	Percentage su	sceptibility to th	ne antimicrobial a	agents (numb	er of isolates)					
	Staphylococcu	is aureus				Streptococc	us pneumoniae				
	2011 (790)	2012 (1717)	2013 (2383)	All years (4890)	p-Value	2011 (102)	2012 (230)	2013 (316)	All years (648)	p-Value	
Oxacillin Ceftriaxone	76.4 (790)	72.1 (1717)	72.9 (2245)	73.3	0.066	50.5 (61) 94.5 (94)	44.3 (201) 92.4 (92)	46.7 (239) 97.5 (81)	46.2 94.7	0.205 <0.05ª	
Tigecycline	100 (12)	98.8 (236)	100 (244)	99.4	<0.05 ^{a,b}						
TMP-SMX	91.1 (595)	91.6 (1679)	90.5 (2330)	90.9	0.475	52.9 (17)	52.2 (160)	53.3 (119)	52.6	0.654	
Levofloxacin	88.3 (300)	83.0 (1213)	84.0 (784)	84	< 0.05ª	98.5 (70)	96.6 (210)	99.6 (203)	98.1 63.2	<0.05 ^b	
Erythromycin	76.2 (790)	76.0 (1717)	75.9 (2383)	76	0.986	69.4 (102)	64.6 (230)	58.7 (212)		< 0.05 ^b	
Clindamycin	85.8 (759)	81.5 (1535)	83.7 (2065)	83.2	< 0.05ª	82.0 (94)	73.0 (212)	76.4 (282)	76	0.183	
Vancomycin	100 (790)	99.1 (1717)	100 (2383)	99.7	<0.05 ^{a,b}						
	Streptococcus	pyogenes			Enterococcus spp						
	2011 (60)	2012 (459)	2013 (467)	All years (986)	p-Value	2011 (538)	2012 (1666)	2013 (1941)	All years (4145)	p-Value	
Penicillin	100 (60)	100 (459)	100 (160)	100							
Ampicillin						91.1 (518)	85.5 (1415)	81.6 (1914)	84.4	<0.05 ^{a,b}	
Tigecycline						100 (67)	99.0 (388)	100 (268)	99.4	<0.05 ^{a,b}	
Erythromycin	88.4 (60)	93.7 (459)	94.9 (467)	94	<0.05ª						
Clindamycin	83.3 (30)	95.4 (450)	96.1 (419)	95.3	<0.05ª						
Vancomycin						100 (538)	99.0 (1666)	98.8 (1941)	99	<0.05ª	
Teicoplanin						100 (538)	97.7 (1400)	98.8 (1941)	98.6	<0.05 ^{a,b}	

TMP-SMX, trimethoprim-sulfamethoxazole.

Table 5


Susceptibility rate of Escherichia coli and Klebsiella spp obtained from 16 Lebanese hospitals

	Percentage sus	sceptibility to the	antimicrobial ag	ents (numb	er of isolate	s)				
	Escherichia col	i		Klebsiella spp						
	2011 (4035)	2012 (12003)	2013 (14373)	p-Value	All years (30411)	2011 (963)	2012 (3222)	2013 (3698)	p-Value	All years (7883)
Ampicillin	29.1 (1737)	23.6 (8704)	22,6 (12 544)	<0.05 ^{a,b}	23,1	0.0 (227)	0.0 (1973)	0.0 (2366)		0
Amox-Clav	66,7 (4035)	63,3 (12003)	58.5 (14 373)	< 0.05**	61.4	71.1 (963)	68,2 (3222)	64.6 (3698)	<0.05 ^{ab}	66,8
Pip-Taz	89,2 (3466)	86,8 (11437)	78.9 (13 836)	< 0.05**	83,3	83.4 (872)	80,7 (3147)	79,5 (3599)	<0.05 ^{ab}	80,5
Cefoxitin	82,7 (2306)	88,7 (10917)	86.8 (10635)	< 0.05**	87,3	81.0 (467)	88.0 (2754)	90.4 (2632)	<0.05 ^{ab}	88,5
C.C. C.C. C.C. C.C. C.C. C.C. C.C. C.C	69,5 (3591)	62,0 (11572)	37,3 (9499)	< 0.05**	59,2	71.4 (794)	63,1 (3074)	63.9 (2648)	<0.05*	64.4
Cefotaxime	73,6 (1390)	66,1 (8569)	61.5 (10100)	< 0.05**	64.3	75.9 (240)	65.0 (2113)	63.6 (2397)	<0.05 ^{ab}	64.8
Ceftazidime	75,6 (3591)	70,5 (11572)	69.1 (13 567)	< 0.05**	70,5	78,9 (794)	70,3 (3074)	68,7 (3467)	<0.05 ^{ab}	70,5
Cenxime	77.8 (821)	66,5 (5844)	68,7 (5798)	< 0.05**	68,3					
Cefepime	85,2 (2278)	70,8 (11006)	741 (13 030)	< 0.05**	73,7					
Aztreonam	75,5 (2847)	63,3 (10807)	66,7 (13 567)	< 0.05**	66,3	80,3 (679)	66,7 (2938)	68,3 (3403)	<0.05 ^{ab}	68,8
Imipenem	99,5 (4035)	99,3 (12003)	99,2 (14 373)	0.145	99,3	98.6 (963)	98.6 (3222)	97,3 (3698)	<0.05 ^b	98
Gentamicin	66,7 (4035)	72.7 (11491)	72,2 (13 801)	<0.05**	71.7	68.8 (963)	75,2 (3089)	75.6 (3549)	<0.05*	74,6
Amikacin	96,7 (3291)	97,5 (12003)	970 (14373)	<0.05*	97,2	94.2 (848)	96,7 (3222)	95,1 (3698)	<0.05 ^{ab}	95,7
TMD_CMV	49,4 (4035)	48,0 (12003)	49.8 (3651)	<0.05**	49	54.5 (963)	58,1 (3222)	55,8 (3524)	<0.05 ^{ab}	56,6
Ciprofloxacin	57.4 (3035)	57,0 (12003)	520 (4373)	<0.05	54.7	72,2 (963)	71.8 (3222)	73, (3698)	0,372	72,5
Nictorial and an	95,4 (2306)	96,6 (7406)	950 (8710)	<0.05 ^{a,b}	96	61,6 (467)	54.1 (1789)	46,4 (2100)	<0.05 ^{ab}	52,2
Tigecycline	100 (821)	97,3 (3795)	98.5 (5100)	< 0.05**	98,2	100 (149)	84,9 (883)	86,9 (1211)	<0.05 ^{ab}	87
ESBL production rate	32	30,8	33.6	<0.05 ^{a,b}	32,3	30,2	28,1	29,9	0.191	29,2

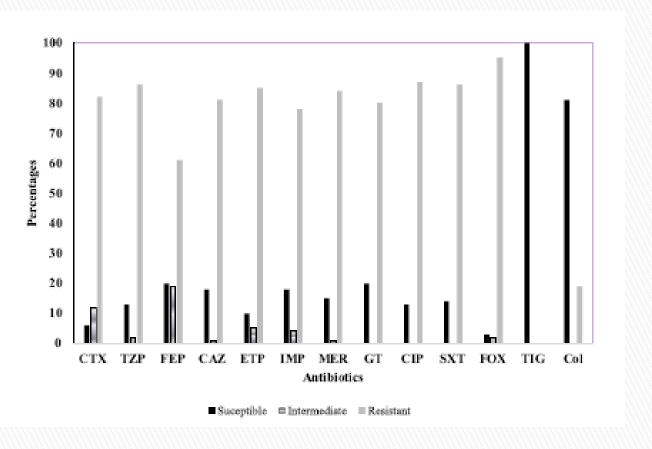
Amox-Clay, amoxicillin-clayulanic acid; Pip-Taz, piperacillin-tazobactam; TMP-SMX, trimethoprim-sulfamethoxazole; ESBL, extended-spectrum beta-lactamase. p-Value reports significant difference between any percentages.

^a p-value <0.05 between 2011 and 2012,
^b p-value <0.05 between 2012 and 2013.

Evolution of resistance over the years

Araj et al 2012

Table 6


Susceptibility rate of Acinetobacter spp and Pseudomonas spp obtained from 16 Lebanese hospitals.

	Percentage su	Percentage susceptibility to the antimicrobial agents (number of isolates)														
	Acinetobacter	spp			Pseudomonas s	pp										
	2011 (242)	2012 (1704)	2013 (1463)	p-Value	All years (3343)	2011 (1105)	2012 (3294)	2013 (3498)	p-Value	All years (7897)						
Pip-Taz	30.6 (242)	11.8 (1704)	11.1 (1397)	<0.05 ^a	12.9	80.5 (1105)	781 (3294)	80.7 (3498)	<0.05 ^b	79.6						
Ceftazidime	24.7 (242)	11.6 (1704)	10.0 (1397)	<0.05 ^a	11.8	78.4 (1105)	81.4 (3294)	83.3 (3498)	< 0.05*	81.8						
Cefepime	30,5 (242)	11.8 (1704)	12,5 (1463)	<0.05*	13.4	78,7 (1105)	82,6 (3294)	84,3 (3498)	< 0.05*	82.8						
Aztreonam	17.0 (219)	3.4 (1242)	9.0 (855)	<0.05 ^{Ab}	6.7	71,5 (1059)	762 (3173)	77,9 (3251)	<0.05*	76.3						
lmipene m	49.2 (242)	15.2 (1704)	15.1 (1463)	< 0.05*	17.6	79.6 (1105)	70.9 (3294)	72,5 (3498)	< 0.05*	72.8						
Gentamicin	42.4 (242)	17.8 (1692)	15.5 (1450)	< 0.05*	18.6	81.9 (1105)	825 (3210)	82.7 (3407)	0.673	82.5						
Amikacin	33.3 (228)	14.0 (1704)	15.4 (1397)	<0.05 ^a	15.9	89.2 (883)	87.1 (3294)	90.5 (3498)	<0.05 ^b	88.9						
TMP-SMX	35.5 (228)	17.2 (1440)	15.3 (1231)	<0.05 ^a	17.8											
Ciprofloxacin	24.0 (242)	10.6 (1704)	10,5 (1433)	<0.05 ^a	11.5	75.5 (1105)	748 (3294)	80.3 (3498)	<0.05 ^b	77.3						
Colistin	N/A	77,1 (552)	95,6 (254)	<0.05 ^b	82,9	,										

Pip-Taz, piperacillin-tazobactam; TMP-SMX, trimethoprim-sulfamethoxazole.

p-Value reports significant difference between any percentages. ^a p-value <0.05 between 2011 and 2012. ^b p-value <0.05 between 2012 and 2013.

Acinetobacter resistance

Soudeiha et al 2018

Local data is essential

Antibiotic							Gran	1-negati	ve bacte	erial iso	lates (n	= 71)						1
	Р.	aerugin	osa	H	influer	iza		marcesc			E. coli		Mo	raxella	spp.	N. g	onorrh	oeae
		(n=31)			(n=13)			(n=9)			(n=8)		(n=6)			(n= 4)		
	S	I	R	S	I	R	S	Ι	R	S	Ι	R	S	Ι	R	S	Ι	R
AK	30	1	0	10	3	0	9	0	0	8	0	0	6	0	0	4	0	0
	(96.	(3.2		(76.	(23.		(10			(10			(10			(10		
	8))		9)	0)		0)			0)			0)			0)		
С	16	3	12	8	2	3	7	0	2	2	0	6	6	0	0	3	0	1
	(51.	(9.7	(38.	(61.	(15.	(23.	(77.		(22.	(25.		(75.	(10			(75.		(25.
	6))	7)	6)	4)	0)	8)		2)	0)		0)	0)			0)		0)
CN	27	4	0	13	0	0	5	0	4	3	2	5	5	1	0	3	0	1
	(87.	(12.		(10			(55.		(44.	(37.	(25.	(37.	(83.	(16.		(75.		(25.
	1)	9)		0)			6)		4)	5)	0)	5)	3)	7)		0)		0)
CIP	26	3	2	12	0	1	9	0	0	3	0	5	6	0	0	4	0	0
	(83.	(9.7	(6.4	(92.		(7.7	(10			(37.		(62.	(10			(10		
	9)))	3))	0)			5)		5)	0)			0)		
SXT	7	1	23	1	0	12	5	0	4	1	0	7	1	0	5	1	0	3
	(22.	(3.2	(74.			(92.	(55.		(44.	(12.		(87.	(16.		(83.	(25.		(75.
	6))	2)	(7.7		3)	6)		4)	5)		5)	7)		3)	0)		0)
TE	8	1	22	9	1	2	4	0	5	7	0	1	5	0	1	3	0	1
	(25.	(3.2	(71.	(69.	(7.7	(15.	(44.		(55.	(87.		(12.	(83.		(16.	(75.		(25.
	8))	0)	2))	4)	4)		5)	5)		5)	3)		7)	0)		0)
DO	17	0	14	10	2	1	6	3	1	5	1	2	6	0	0	2	1	1
	(54.		(45.	(77.	(15.	(7.7	(66.	(33.	(11.	(62.	(12.	(25.	(10			(50.	(25.	(25.
	8)		1)	0)	3))	7)	3)	1)	5)	5)	0)	0)			0)	0)	0)
CRO	21	4	6	11	0	2	2	0	7	1	2	5	5	0	1	4	0	0
	(67.	(12.	(19.	(84.		(15.	(22.		(77.	(12.	(25.	(62.	(83.		(16.	(10		
	7)	9)	4)	6)		3)	2)		8)	5)	0)	5)	3)		7)	0)		
E	NT	NT	NT	11	0	2	NT	NT	NT	NT	NT	NT	NT	NT	NT	4	0	0
				(84.	(0)	(15.										(10		
				6)		4)										0)		
Р	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	3	0	1
																(75.	(0)	(25.
D Daniaillin (1)																0)		0)

P-Penicillin (10 U), AK-Amikacin (30 µg), C- Chloroamphenicol (30 µg,) CN- Gentamicin (10 µg), VA-Vancomycin (30 µg), E- Erthromycin (15 µg), SXT-Trimethoprim-sulphamethoxazole (1.25/23.75 µg), TE-Tetracycline (30 µg), DO-Doxycycline (30 µg), CRO-Ceftriaxone (30 µg), NT= Not tested

Take home messages

- Antibiotic resistance is a major health issue
- In Lebanon as everywhere resistance is on the rise
- Local data (hospital level or even ward level is essential)

Thank you